Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Environ Toxicol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629620

RESUMO

Bisphenol A (BPA) is widely used in plastic and paper products, and its exposure can occur through skin contact or oral ingestion. The hazardous effects of BPA absorbed through the skin may be more severe; however, few studies have investigated the skin toxicity of BPA. This study investigated the effects of BPA on human epidermal keratinocyte cell lines, which is relevant for skin exposure. BPA treatment reduced cell viability in a time- and concentration-dependent manner and elevated oxidative and endoplasmic reticulum (ER) stress. N-acetylcysteine (NAC), an oxidative stress inhibitor, reduced BPA-induced reactive oxygen species (ROS) levels. However, only 10% of the decreased cell viability was restored at the highest NAC concentration. Treatment with tauroursodeoxycholic acid (TUDCA), which is an ER stress inhibitor, effectively countered the increase in ER stress-related proteins induced by BPA. Moreover, TUDCA treatment led to a reduction in oxidative stress, as demonstrated by the decrease in ROS levels, maintenance of mitochondrial membrane potential, and modulation of stress signaling proteins. Consequently, TUDCA significantly improved BPA-induced cytotoxicity in a concentration-dependent manner. Notably, combined treatment using TUDCA and NAC further reduced the BPA-induced ROS levels; however, no significant difference in cell viability was observed compared with that for TUDCA treatment alone. These findings indicated that the oxidative stress observed following BPA exposure was exacerbated by ER stress. Moreover, the principal factor driving BPA-induced cytotoxicity was indeed ER stress, which has potential implications for developing therapeutic strategies for diseases associated with similar stress responses.

3.
Food Chem Toxicol ; 187: 114624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556155

RESUMO

Diclofenac, a widely used non-steroidal anti-inflammatory drug, can cause liver damage via its metabolic activation by hepatic CYP450s and UGT2B7. Fasting can affect drug-induced liver injury by modulating the hepatic metabolism, but its influence on diclofenac hepatotoxicity is unknown. Thus, we investigated diclofenac-induced liver damage after fasting in mice, and the cellular events were examined. Male ICR mice fasted for 16 h showed the elevation of CYP3A11, but the decreases of UGT2B7, glutathione (GSH), and GSH S-transferase-µ/-π levels in the livers. Diclofenac (200 mg/kg) injection into the mice after 16-h fasting caused more significant liver damage compared to that in the diclofenac-treated fed mice, as shown by the higher serum ALT and AST activities. Diclofenac-promoted hepatic oxidative stress (oxidized proteins, 4-hydroxynonenal, and malondialdehyde), endoplasmic reticulum (ER) stress (BiP, ATF6, and CHOP), and apoptosis (cleaved caspase-3 and cleaved PARP) were enhanced by fasting. Autophagic degradation was inhibited in the diclofenac-treated fasting mice compared to that of the corresponding fed mice. The results suggest that fasting can make the liver more susceptible to diclofenac toxicity by lowering GSH-mediated detoxification; increased oxidative/ER stresses and apoptosis and suppressed autophagic degradation may be the cellular mechanisms of the aggravated diclofenac hepatotoxicity under fasting conditions.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Masculino , Animais , Diclofenaco/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos ICR , Fígado/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Glutationa/metabolismo , Estresse Oxidativo , Jejum , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473760

RESUMO

Bone differentiation is crucial for skeletal development and maintenance. Its dysfunction can cause various pathological conditions such as rickets, osteoporosis, osteogenesis imperfecta, or Paget's disease. Although traditional two-dimensional cell culture systems have contributed significantly to our understanding of bone biology, they fail to replicate the intricate biotic environment of bone tissue. Three-dimensional (3D) spheroid cell cultures have gained widespread popularity for addressing bone defects. This review highlights the advantages of employing 3D culture systems to investigate bone differentiation. It highlights their capacity to mimic the complex in vivo environment and crucial cellular interactions pivotal to bone homeostasis. The exploration of 3D culture models in bone research offers enhanced physiological relevance, improved predictive capabilities, and reduced reliance on animal models, which have contributed to the advancement of safer and more effective strategies for drug development. Studies have highlighted the transformative potential of 3D culture systems for expanding our understanding of bone biology and developing targeted therapeutic interventions for bone-related disorders. This review explores how 3D culture systems have demonstrated promise in unraveling the intricate mechanisms governing bone homeostasis and responses to pharmacological agents.


Assuntos
Técnicas de Cultura de Células , Osteogênese , Animais , Células Cultivadas , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Osso e Ossos
5.
Curr Res Food Sci ; 8: 100663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38222825

RESUMO

Betaine, a compound found in plants and sea foods, is known to be beneficial against non-alcoholic fatty liver disease (NAFLD), but its hepatoprotective and anti-steatogenic mechanisms have been not fully understood. In the present study, we investigated the mechanisms underlying betaine-mediated alleviation of NAFLD induced by a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) in mice, with special focus on the contribution of betaine-stimulated autophagy to NAFLD prevention. Male ICR mice were fed a CDAHFD with or without betaine (0.2-1% in drinking water) for 1 week. Betaine ameliorated the CDAHFD-induced fatty liver by restoring sulfur amino acid (SAA)-related metabolites, such as S-adenosylmethionine and homocysteine, and the phosphorylation of AMPK and ACC. In addition, it reduced the CDAHFD-induced ER stress (BiP, ATF6, and CHOP) and apoptosis (Bax, cleaved caspase-3, and cleaved PARP); however, it induced autophagy (LC3II/I and p62) which was downregulated by CDAHFD. To determine the role of autophagy in the improvement of NAFLD, chloroquine (CQ), an autophagy inhibitor, was injected into the mice fed a CDAHFD and betaine (0.5 % in drinking water). CQ did not affect SAA metabolism but reduced the beneficial effects of betaine as shown by the increases of hepatic lipids, ER stress, and apoptosis. Notably, the betaine-induced improvements in lipid metabolism determined by protein levels of p-AMPK, p-ACC, PPARα, and ACS1, were reversed by CQ. Thus, the results of this study suggest that the activation of autophagy is an important upstream mechanism for the inhibition of steatosis, ER stress, and apoptosis by betaine in NAFLD.

6.
Biomol Ther (Seoul) ; 32(1): 94-103, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38148555

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver, and there is a global increase in its incidence owing to changes in lifestyle and diet. Recent findings suggest that p53 is involved in the development of non-alcoholic fatty liver disease; however, the association between p53 expression and the disease remains unclear. Doxorubicin, an anticancer agent, increases the expression of p53. Therefore, this study aimed to investigate the role of doxorubicin-induced p53 upregulation in free fatty acid (FFA)-induced intracellular lipid accumulation. HepG2 cells were pretreated with 0.5 µg/mL of doxorubicin for 12 h, followed by treatment with FFA (0.5 mM) for 24 h to induce steatosis. Doxorubicin pretreatment upregulated p53 expression and downregulated the expression of endoplasmic reticulum stress- and lipid synthesis-associated genes in the FFA -treated HepG2 cells. Additionally, doxorubicin treatment upregulated the expression of AMP-activated protein kinase, a key modulator of lipid metabolism. Notably, siRNA-targeted p53 knockdown reversed the effects of doxorubicin in HepG2 cells. Moreover, doxorubicin treatment suppressed FFA -induced lipid accumulation in HepG2 spheroids. Conclusively, these results suggest that doxorubicin possesses potential application for the regulation of lipid metabolism by enhance the expression of p53 an in vitro NAFLD model.

7.
Mol Nutr Food Res ; 67(24): e2300462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37986167

RESUMO

SCOPE: Particulate matter (PM) can cause cellular oxidative damage and promote respiratory diseases. It has recently shown that Sargassum horneri ethanol extract (SHE) containing sterols and gallic acid reduces PM-induced oxidative stress in mice lung cells through ROS scavenging and metal chelating. In this study, the role of alveolar macrophages (AMs) is identified that are particularly susceptible to DNA damage due to PM-triggered oxidative stress in lungs of OVA-sensitized mice exposed to PM. METHODS AND RESULTS: The study scrutinizes if PM exposure causes oxidative DNA damage to AMs differentially depending on their type of polarization. Further, SHE's potential is investigated in reducing oxidative DNA damage in polarized AMs and restoring AM polarization in PM-induced allergic airway inflammation. The study discovers that PM triggers prolonged oxidative stress to AMs, leading to lipid peroxidation in them and alveolar epithelial cells. Particularly, AMs are polarized to M2 phenotype (F4/80+ CD206+ ) with enhanced oxidative DNA damage when subject to PM-induced oxidative stress. However, SHE repairs oxidative DNA damage in M1- and M2-polarized AMs and reduces AMs polarization imbalance due to PM exposure. CONCLUSION: These results suggest the possibility of SHE as beneficial foods against PM-induced allergic airway inflammation via suppression of AM dysfunction.


Assuntos
Macrófagos Alveolares , Sargassum , Animais , Camundongos , Material Particulado/toxicidade , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Estresse Oxidativo , Administração Oral
8.
J Laryngol Otol ; : 1-4, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37795680

RESUMO

BACKGROUND: As autophony can be accompanied by several conditions, it is important to find co-morbidities. This paper reports a patient with Kennedy's disease (spinobulbar muscular atrophy, an X-linked, hereditary, lower motor neuron disease) having autophony as the first symptom. CASE REPORT: A 62-year-old male presented to the otorhinolaryngology department with autophony that began 2 years previously and worsened after losing weight 3 months prior to presentation. Otoscopic examination demonstrated inward and outward movement of the tympanic membrane, synchronised with respiration. Although he had no other symptoms, facial twitching was found on physical examination. In the neurology department, lower motor neuron disease, with subtle weakness of the tongue, face and upper limbs, and gynaecomastia, were confirmed. He was diagnosed with Kennedy's disease based on genetic analysis. CONCLUSION: Autophonia was presumed to be attributed to bulbofacial muscle weakness due to Kennedy's disease, and worsened by recent weight loss. Patients with autophony require a thorough history-taking and complete physical examination to assess the nasopharynx and the integrity of lower cranial function.

9.
Technol Health Care ; 31(S1): 515-523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066947

RESUMO

BACKGROUND: A representative symptom of Parkinson's disease (PD) is resting tremor. The clinical manifestation of scans without evidence of dopaminergic deficit (SWEDD) is similar to it of PD, though the phenomenology of SWEDD is not well known. OBJECTIVE: In the present study, the resting tremor of 9 SWEDD patients was quantitatively compared with that of 11 PD patients. METHODS: Four 3-axis gyro sensors were attached on the index finger, thumb, dorsum of the hand, and arm of the more tremulous side. Root mean square (RMS) angular speed and angular displacement as well as irregularity of angular speed and displacement were derived from the sensor data. RESULTS: Although disease duration and Hoehn and Yahr stages were comparable, SWEDD patients exhibited different tremor features from PD patients. Significantly faster RMS angular speed and greater RMS angular displacement (p< 0.05) were observed in PD patients than in SWEDD patients. The irregularity of angular displacement of pitch direction at the dorsum of the hand was greater in SWEDD patients than in PD patients (p< 0.05). CONCLUSION: These results indicate that quantitative indices obtained from resting tremor task could be important biomarkers for identifying potential patients with SWEDD among patients diagnosed with PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Tremor/diagnóstico , Dedos , Mãos , Diagnóstico Diferencial , Dopamina
10.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771140

RESUMO

Liver metabolic disorders and oxidative stress are crucial factors in the development of nonalcoholic fatty liver disease (NAFLD); however, treatment strategies to combat NAFLD remain poorly established, presenting an important challenge that needs to be addressed. Herein, we aimed to examine the effect of isoquercitrin on lipid accumulation induced by exogenous free fatty acids (FFA) using HepG2 cells and elucidate the underlying molecular mechanism. The cells were exposed to 0.5 mM FFA to induce intracellular lipid accumulation, followed by co-treatment with isoquercitrin to confirm the potential inhibitory effect on FFA-induced lipid production. HepG2 cells exposed to FFA alone exhibited intracellular lipid accumulation, compromised endoplasmic reticulum (ER) stress, and enhanced expression of proteins and genes involved in lipid synthesis; however, co-treatment with isoquercitrin decreased the expression of these molecules in a dose-dependent manner. Furthermore, isoquercitrin could activate AMP-activated protein kinase (AMPK), a key regulatory protein of hepatic fatty acid oxidation, suppressing new lipid production by phosphorylating acetyl-CoA carboxylase (ACC) and inhibiting sterol regulatory element-binding transcription factor 1 (SREBP-1)/fatty acid synthase (FAS) signals. Overall, these findings suggest that isoquercitrin can be employed as a therapeutic agent to improve NAFLD via the regulation of lipid metabolism by targeting the AMPK/ACC and SREBP1/FAS pathways.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Hep G2 , Ácidos Graxos não Esterificados/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado , Metabolismo dos Lipídeos
11.
Metabolites ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295812

RESUMO

Although age-related characteristics of hepatic metabolism are reported, those in infants are not fully understood. In the present study, we performed untargeted metabolomic profiling of the livers of infant (3-week-old) and adult (9-week-old) male ICR mice using 1H-NMR spectroscopy and compared 35 abundant hepatic metabolite concentrations between the two groups. The liver/body weight ratio did not differ between the two groups; however, serum glucose, blood urea nitrogen, total cholesterol, and triglyceride concentrations were lower in infants than in adults. Hepatic carbohydrate metabolites (glucose, maltose, and mannose) were higher, whereas amino acids (glutamine, leucine, methionine, phenylalanine, tyrosine, and valine) were lower in infant mice than in adult mice. The concentrations of ascorbate, betaine, sarcosine, and ethanolamine were higher, whereas those of taurine, inosine, and O-phosphocholine were lower in infant mice than in adult mice. The differences in liver metabolites between the two groups could be due to differences in their developmental stages and dietary sources (breast milk for infants and laboratory chow for adults). The above results provide insights into the hepatic metabolism in infants; however, the exact implications of the findings require further investigation.

12.
J Nutr Biochem ; 108: 109082, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697284

RESUMO

Dietary restriction (DR) has been revealed to have health benefits as it induces reduction in oxidative stress. Glutathione (GSH), an important cellular antioxidant, is increased in rodent livers owing to DR; however, the exact mechanism and clinical relevance of DR are yet to be fully understood. In this study, male C57BL/6 mice were administered a 50% restricted diet for 7 d, and the hepatic sulfur-containing amino acid (SAA) metabolism was determined to assess the biosynthesis of GSH. The hepatic methionine level was found to decrease, while the homocysteine, cysteine, and GSH levels were increased owing to decreased betaine-homocysteine methyltransferase (BHMT) and increased CßS, CγL, and glutamate cysteine ligase catalytic subunit (GCLC) proteins in the livers of mice subjected to DR. To determine the effects of DR on drug-induced oxidative liver injury, mice subjected to DR were injected with a toxic dose (300 mg/kg) of acetaminophen (APAP). DR significantly alleviated APAP-induced liver damage and oxidative stress, which might be attributed to the higher levels of GSH and related antioxidant enzyme (GPx, GSTα, and GSTµ) in the livers. The decrease in the levels of hepatic CYP1A, 2E1, and 3A, which imply the inhibition of APAP metabolic activation, could contribute to the lower hepatotoxicity in mice subjected to DR. Overall, our findings revealed that DR stimulated the hepatic transsulfuration pathway and GSH synthesis. The consequent elevation of GSH could thus serve as an important mechanism of DR-mediated liver protection against APAP intoxication.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Animais , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Enxofre/metabolismo , Enxofre/farmacologia
13.
Toxins (Basel) ; 14(4)2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35448847

RESUMO

BACKGROUND: Bee venom acupuncture (BVA) is an effective treatment method for various diseases. Bee venom, however, can cause adverse effects, even rarely including life-threatening anaphylaxis, so safety-related evidence is required. In this study, we systematically estimated the incidence rate of anaphylaxis in response to BVA. METHODS: We searched eight databases (MEDLINE (Pubmed), EMBASE, Cochrane Central Register of Controlled, KISS, KMBASE, Koreamed, OASIS, and NDSL) and systematically reviewed the articles that met the inclusion/exclusion criteria. RESULTS: Among 225 potentially relevant articles, 49 were selected for this study. The overall incidence rate of anaphylaxis in response to BVA was 0.045% (95% CI 0.028-0.062). Women (0.083%, 95% CI 0.010-0.157) showed a higher incidence rate than men (0.019%, 95% CI -0.018 to 0.055), while the incidence for patients who had a skin test conducted (0.041%, 95% CI 0.011-0.072) was not significantly different compared to that obtained for patients for which there was no information about a skin test (0.047%, 95% CI 0.026-0.067). The publication year affected the incidence rate: it was highest before 1999 (1.099%, 95% CI -1.043 to 3.241), lower between 2000 and 2009 (0.049%, 95% CI 0.025-0.073), and lowest between 2010 and 2021 (0.037% 95% CI 0.014-0.060). CONCLUSIONS: In this study, we provide reference data about risk size and factors of BVA-related anaphylaxis, which is essentially required for BVA application in clinics.


Assuntos
Terapia por Acupuntura , Anafilaxia , Venenos de Abelha , Terapia por Acupuntura/efeitos adversos , Terapia por Acupuntura/métodos , Anafilaxia/induzido quimicamente , Anafilaxia/epidemiologia , Anafilaxia/terapia , Venenos de Abelha/toxicidade , Feminino , Humanos , Incidência , Resultado do Tratamento
14.
Life (Basel) ; 12(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35330105

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver dysfunction characterized by excess lipid accumulation; non-alcoholic steatohepatitis can transform into more severe conditions, such as cirrhosis and hepatocellular carcinoma. Although several pharmacologic approaches have been evaluated in clinical trials, there are no approved therapies for NAFLD. Previous studies have suggested that taurine supplementation alleviates fatty liver; however, the underlying mechanism remains obscure. In this study, we investigated the beneficial effects of taurine on fatty liver injury in vivo induced by tunicamycin, a chemical endoplasmic reticulum (ER) stressor. The mice were administered 2% taurine for 2 weeks prior to intraperitoneal tunicamycin injection; after 72 h of treatment, the mice were euthanized. Tunicamycin treatment significantly increased the levels of serum ALT and AST and hepatic triglycerides. Notably, these changes were alleviated by taurine supplementation. Taurine normalized the protein and/or mRNA levels involved in ER stress signaling (IRE1a, p-IRE1a, ATF6, XBP1, BiP, and CHOP) and lipid metabolism (CD36, MTTP, and ApoB), which were dysregulated by tunicamycin treatment. The stimulation of hepatic lipid export by taurine was evidenced by the recovery of blood VLDL levels. Furthermore, taurine supplementation prevented tunicamycin-induced lipid peroxidation and decreased glutathione (GSH) levels by correcting abnormal cysteine catabolism involved in the production of both taurine and GSH. Therefore, taurine supplementation can prevent tunicamycin-induced liver injury by counteracting oxidative and ER stress.

15.
Eur Radiol ; 32(5): 3597-3608, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35064313

RESUMO

OBJECTIVES: This study aimed to compare susceptibility map-weighted imaging (SMwI) using various MRI machines (three vendors) with N-3-fluoropropyl-2-ß-carbomethoxy-3-ß-(4-iodophe nyl)nortropane (18F-FP-CIT) PET in the diagnosis of neurodegenerative parkinsonism in a multi-centre setting. METHODS: We prospectively recruited 257 subjects, including 157 patients with neurodegenerative parkinsonism, 54 patients with non-neurodegenerative parkinsonism, and 46 healthy subjects from 10 hospitals between November 2019 and October 2020. All participants underwent both SMwI and 18F-FP-CIT PET. SMwI was interpreted by two independent reviewers for the presence or absence of abnormalities in nigrosome 1, and discrepancies were resolved by consensus. 18F-FP-CIT PET was used as the reference standard. Inter-observer agreement was tested using Cohen's kappa coefficient. McNemar's test was used to test the agreement between the interpretations of SMwI and 18F-FP-CIT PET per participant and substantia nigra (SN). RESULTS: The inter-observer agreement was 0.924 and 0.942 per SN and participant, respectively. The diagnostic sensitivity of SMwI was 97.9% and 99.4% per SN and participant, respectively; its specificity was 95.9% and 95.2%, respectively, and its accuracy was 97.1% and 97.7%, respectively. There was no significant difference between the results of SMwI and 18F-FP-CIT PET (p > 0.05, for both SN and participant). CONCLUSIONS: This study demonstrated that the high diagnostic performance of SMwI was maintained in a multi-centre setting with various MRI scanners, suggesting the generalisability of SMwI for determining nigrostriatal degeneration in patients with parkinsonism. KEY POINTS: • Susceptibility map-weighted imaging helps clinicians to predict nigrostriatal degeneration. • The protocol for susceptibility map-weighted imaging can be standardised across MRI vendors. • Susceptibility map-weighted imaging showed diagnostic performance comparable to that of dopamine transporter PET in a multi-centre setting with various MRI scanners.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos Parkinsonianos/diagnóstico por imagem , Estudos Prospectivos , Substância Negra/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos
16.
Antioxidants (Basel) ; 10(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34943052

RESUMO

Overdose of acetaminophen (APAP) can cause severe liver injury. Although alcohol is considered a risk factor for APAP toxicity, the mechanism underlying the interaction between alcohol and APAP remains unclear. Binge alcohol (5 g/kg every 12 h, 3 doses) reduced the concentration of cysteine and glutathione (GSH) and decreased expression of cystathionine ß-synthase (CßS), cystathionine γ-lyase (CγL), and glutamate cysteine ligase catalytic subunit (GCLC) in the livers of male C57BL/6 mice. Furthermore, the levels of GSH S-transferase (GST) and GSH peroxidase (GPx) were decreased. To evaluate the effect of binge drinking on APAP-induced liver injury, 300 mg APAP was administered following alcohol binges. APAP in the binge group significantly amplified the serum ALT more than two fold and enhanced the pro-apoptotic proteins with a severe centrilobular necrosis compared to APAP alone. APAP treatment after alcohol binges caused lower levels of hepatic cysteine and GSH than APAP alone over 24 h, indicating that alcohol binges reduced GSH regenerating potential. Exposure to APAP after binge treatment significantly increased oxidative stress (lipid peroxidation) and endoplasmic reticulum (ER) stress (Grp78 and ATF6) markers at 6 h after treatment. Notably, the IRE1α/ASK1/MKK4/JNK pathway was activated, whereas CHOP expression was reduced by APAP administration in mice with pre-exposed alcohol binges compared with APAP alone. Thus, pretreatment with binge alcohol decreases GSH-mediated antioxidant capacity and contributes to augmentation of liver injury caused by subsequent APAP administration through differential ER stress signaling pathway.

17.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066201

RESUMO

Hardening of cheese is one of major issues that degrade the quality of Home Meal Replacement (HMR) foods containing cheese such as Cheese-ddukbokki rice cake (CD, stir-fried rice cakes with shredded cheese). The quality of cheese, such as pH, proteolytic, and flavor properties, depends on various lactic acid bacteria (LAB) used in cheese fermentation. The hardening of cheese is also caused by LAB. In this study, various LAB strains were isolated from CD samples that showed rapid hardening. The correlation of LAB with the hardening of cheese was investigated. Seven of the CD samples with different manufacturing dates were collected and tested for hardening properties of cheese. Among them, strong-hardening of cheese was confirmed for two samples and weak-hardening was confirmed for one sample. All LAB in two strong-hardening samples and 40% of LAB in one weak-hardening sample were identified as Latilactobacilluscurvatus. On the other hand, most LAB in normal cheese samples were identified as Leuconostoc mesenteroides and Lactobacillus casei. We prepared cheese samples in which L. curvatus (LC-CD) and L. mesenteroides (LM-CD) were most dominant, respectively. Each CD made of the prepared cheese was subjected to quality test for 50 days at 10 °C. Hardening of cheese with LC-CD dominant appeared at 30 days. However, hardening of cheese with LM-CD dominant did not appear until 50 days. The pH of the LC-CD was 5.18 ± 0.04 at 30 days, lower than that of LM-CD. The proteolytic activity of LC-CD sample was 2993.67 ± 246.17 units/g, higher than that of LM-CD sample (1421.67 ± 174.5 units/g). These results indicate that high acid production and high protease activity of L. curvatus might have caused hardening of cheese.

18.
Molecules ; 26(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672046

RESUMO

Substituted N-phenyl cinnamamide derivatives were designed and synthesized to confirm activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway by the electronic effect on beta-position of Michael acceptor according to introducing the R1 and R2 group. Compounds were screened using the Nrf2/antioxidant response element (ARE)-driven luciferase reporter assay. Compound 1g showed desirable luciferase activity in HepG2 cells without cell toxicity. mRNA and protein expression of Nrf2/ARE target genes such as NAD(P)H quinone oxidoreductase 1, hemeoxygenase-1, and glutamate-cysteine ligase catalytic subunit (GCLC) were upregulated by compound 1g in a concentration-dependent manner. Treatment with 1g resulted in increased endogenous antioxidant glutathione, showing strong correlation with enhanced GCLC expression for synthesis of glutathione. In addition, tert-butyl hydroperoxide (t-BHP)-generated reactive oxygen species were significantly removed by 1g, and the results of a cell survival assay in a t-BHP-induced oxidative cell injury model showed a cytoprotective effect of 1g in a concentration dependent manner. In conclusion, the novel compound 1g can be utilized as an Nrf2/ARE activator in antioxidative therapy.


Assuntos
Cinamatos/farmacologia , Citoproteção/efeitos dos fármacos , Glutationa/biossíntese , Hepatócitos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Elementos de Resposta Antioxidante/genética , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Morte Celular/efeitos dos fármacos , Cinamatos/química , Glutationa/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Luciferases/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Substâncias Protetoras/farmacologia , terc-Butil Hidroperóxido
19.
Neurology ; 96(10): e1391-e1401, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536275

RESUMO

OBJECTIVE: To investigate the longitudinal association among high-density lipoprotein cholesterol (HDL-C) level, HDL-C variability, and the risk of developing Parkinson disease (PD). METHODS: We conducted a nationwide, population-based cohort study. We included 382,391 patients aged ≥65 years who underwent at least 3 health examinations provided by the Korean National Health Insurance System from 2008 to 2013 and followed up until 2017. Individuals with a history of PD and missing values were excluded (n = 1,987). We assessed HDL-C variability using 3 indices, including variability independent of the mean (VIM). A multivariate-adjusted Cox proportional hazards regression analysis was performed. RESULTS: Among the 380,404 participants, 2,733 individuals were newly diagnosed with PD during a median follow-up period of 5 years. The lowest quartile (Q1) group of baseline HDL-C and mean HDL-C was associated with increased PD incidence as compared with the highest quartile (Q4) group (adjusted hazard ratio [aHR], 1.20; 95% confidence interval [CI], 1.08-1.34; and aHR, 1.16; 95% CI, 1.04-1.30, respectively). The Q4 group of HDL-C variability (VIM) was associated with increased PD incidence compared to the Q1 group (aHR, 1.19; 95% CI, 1.06-1.33). The group with the Q1 of baseline HDL-C and with the Q4 of HDL-C variability had the highest risk of PD incidence (aHR, 1.6; 95% CI, 1.31-1.96). CONCLUSION: Lower HDL-C level and greater HDL-C variability were associated with a higher incidence of PD.


Assuntos
HDL-Colesterol/sangue , Doença de Parkinson/sangue , Idoso , Estudos de Coortes , Comorbidade , Feminino , Seguimentos , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/epidemiologia , Modelos de Riscos Proporcionais , República da Coreia/epidemiologia , Medição de Risco , Fatores de Risco
20.
Lab Anim Res ; 37(1): 8, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509279

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD), including both Crohn's disease and ulcerative colitis, are chronic human diseases that are challenging to cure and are often unable to be resolved. The inbred mouse strain C57BL/6 N has been used in investigations of IBD as an experimental animal model. The purpose of the current study was to compare the inflammatory responsiveness of C57BL/6NKorl mice, a sub-strain recently established by the National Institute of Food and Drug Safety Evaluation (NIFDS), with those of C57BL/6 N mice from two different sources using a dextran sulfate sodium (DSS)-induced colitis model. RESULTS: Male mice (8 weeks old) were administered DSS (0, 1, 2, or 3%) in drinking water for 7 days. DSS significantly decreased body weight and colon length and increased the colon weight-to-length ratio. Moreover, severe colitis-related clinical signs including diarrhea and rectal bleeding were observed beginning on day 4 in mice administered DSS at a concentration of 3%. DSS led to edema, epithelial layer disruption, inflammatory cell infiltration, and cytokine induction (tumor necrosis factor-α, interleukin-6, and interleukin-1ß) in the colon tissues. However, no significant differences in DSS-promoted abnormal symptoms or their severity were found between the three sub-strains. CONCLUSIONS: These results indicate that C57BL/6NKorl mice responded to DSS-induced colitis similar to the generally used C57BL6/N mice, thus this newly developed mouse sub-strain provides a useful animal model of IBD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...